GCSE DESIGN AND TECHNOLOGY THEORY CHECKLIST ## <u>Task</u> - Read through the checklist and tick to indicate your level of knowledge for each topic. - Revise each topic (starting with your weaker areas) using your exercise book, revision guide and revision cards. You can also use www.technologystudent.com, where you will find information on all of these topics. | | | LITTLE | SOME | GOOD | |--------------------------------|---|--------|------|------| | CORE THEOR | Υ | | | | | Impact of new and eme | erging technologies on: | | | | | Industry | Design and organisation of the workplace, automation and the use of robots, buildings and the place of work | | | | | Enterprise | Crowd funding, virtual marketing and retail, cooperatives, fair trade | | | | | Sustainability | Finite, non finite, disposal of waste | | | | | People | Technology push/market pull, changing job roles | | | | | Culture | Changes in fashion, respecting people of different faiths and beliefs | | | | | Society | Design for the disabled, the elderly and different religious groups | | | | | Environment | Positives - Continuous improvement, efficient working | | | | | | Negatives – Pollution, global warming | | | | | Production techniques | Automation | | | | | and systems | Computer aided design (CAD) | | | | | and dysterns | Computer aided manufacture (CAM) | | | | | | Flexible manufacturing systems (FMS) | | | | | | Just in time (JIT) | | | | | | Lean manufacturing | | | | | Informina docian | , , | | | | | Informing design decisions | Planned obsolescence, design for maintenance, ethics, environment | | | | | | storage (inc. arguments for and against) | | | 1 | | Fossil fuels | Coal, gas, oil | | | | | Nuclear power | Nuclear | | | | | Renewable energy | Wind, solar, tidal, hydro-electrical, biomass | | | | | Environment and Susta | inability Issues | | | | | Energy storage | Kinetic pumped storage systems | | | | | systems including
batteries | Alkaline and re-chargeable batteries | | | | | Developments in new r | naterials through: | | | | | Modern materials | Graphene, metal foams, titanium etc. | | | | | | Coated metals, liquid crystal display (LCD), nanomaterials etc. | | | | | Smart Materials | Shape memory alloys, thermochromic pigments etc. | | | | | Composite materials | Glass reinforced plastic (GRP), carbonfibre reinforced plastic (CRP) | | | | | Technical textiles | Conductive fabrics, fire resistant fabrics, kevlar, microfibres etc. | | | | | Systems approach to de | | | | l | | Inputs | Use of light, temperature and pressure sensors and switches | | | | | Processes | Programming microcontrollers as counters, timers and for decision making | | | | | Outputs | Use of buzzers, speakers and lamps | | | | | Mechanical devices | Ose of buzzers, speakers and ramps | | | | | Different types of | Linear, rotary, reciprocating and oscillating movements | | | | | movement | Linear, rotary, reciprocating and oscillating movements | | | | | Changing magnitude | Lovers linkages came gears pulleys | | | | | | Levers, linkages, cams, gears, pulleys | | | | | and direction of force | rking properties | | | l | | Materials and their wo | Bleed proof, cartridge, grid, layout, tracing paper | | | I | | Papers | , | | | | | Boards | Corrugated, duplex, foil lined, foam core, inkjet card, solid white | | | | | Natural timbers | Hardwoods and softwoods | | | | | Manufactured boards | Medium density fibreboard (MDF), plywood, chipboard | | | | | Ferrous metals | Low carbon steel, cast iron, high carbon/tool steel | | | | | Non-ferrous metals | Aluminium, copper, tin, zinc | | | | | | |---|---|----------|----------|----------|--|--| | Alloys | Brass, stainless steel, high speed steel | | | | | | | Thermoplastics | Acrylic (PMMA), HIPS, HDPE, PP, PVC, PET | | | | | | | Thermosetting | Epoxy resin (ER), melamine-formaldehyde (MF), phenol | | | | | | | plastics | formaldehyde (PF), polyester resin (PR), urea- formaldehyde (UF) | | | | | | | Natural fibres | Cotton, wool, silk | | | | | | | Synthetic fibres | Polyester, polyamide (nylon), elastane (lycra) | | | | | | | Blended/mixed fibres | Cotton/polyester | | | | | | | Woven | Plain weave | | | | | | | Non- woven | | | | | | | | Knitted textiles | Bonded fabrics, felted fabrics Knitted fabrics | | | | | | | Material properties | j | | | | | | | iviateriai properties | Physical properties such as density, fusibility, absorbency, electrical and thermal conductivity. | | | | | | | | Working properties such as strength, hardness, toughness, | | | | | | | | malleability, ductility, elasticity | | | | | | | | maneubinty, ductinty, endsticity | | | | | | | SPECIALIST THEORY (in relation to one material) | | | | | | | | Selection of materials | Functionality, aesthetics, environment, availability, cost, social | | | | | | | | factors, cultural factors and ethical factors | | | | | | | Forces and stresses | | | | | | | | Manipulation of | Tension, compression, bending, torsion and shear. | | | | | | | materials | | | | | | | | Enhancement of | Reinforced, stiffened, made more flexible e.g. lamination, bending, | | | | | | | materials | folding, webbing, fabric interfacing | | | | | | | Ecological and social fo | | • | • | | | | | Ecological issues | Deforestation, mining, drilling and farming. | | | | | | | | Product miles | | | | | | | | Carbon footprint | | | | | | | The 6Rs | Reduce, refuse, reuse, repair, recycle, rethink | | | | | | | Social issues | Safe working conditions, reducing oceanic/atmospheric pollution | | | | | | | Social issues | and reducing the detrimental impact on others. | | | | | | | Courses and origins | and reducing the detrimental impact on others. | | | | | | | Sources and origins | Daney and board (callulass fibres from wood and arasses converted | I | 1 | | | | | Primary sources and | Paper and board (cellulose fibres from wood and grasses converted | | | | | | | main processes | into paper) <u>or</u> | | | | | | | | Timber based materials (seasoning, conversion and creation of | | | | | | | | manufactured timbers) | | | | | | | Using and working with | | I | 1 | | | | | Properties of | Papers and boards (flyers/leaflets and card based food packaging) | | | | | | | materials relevant to | <u>or</u> | | | | | | | commercial products | Timber based materials (traditional timber children's toys and flat | | | | | | | | pack furniture) | | | | | | | Modification of | Additives to prevent moisture transfer (paper and board) <u>or</u> | | | | | | | properties | Seasoning to reduce moisture content (timber based materials) | | | | | | | Cutting, abrasion and | Paper and board (how to cut, crease, score, fold and perforate | | | | | | | addition | card) <u>or</u> | | | | | | | | Timber based materials (how to cut, drill, chisel, sand and plane) | | | | | | | Stock forms, types and | sizes | | | | | | | Commercially | Papers and boards: | | | | | | | available types and | - sheet, roll, ply | | | | | | | sizes and components | - sold by size e.g. A3, thickness, weight and colour | | | | | | | | - standard components e.g. fasteners, seals and bindings <u>or</u> | | | | | | | | Timber based materials: - planks, boards and standard mouldings | | | | | | | | - planks, boards and standard mouldings
- sold by length, width, thickness and diameter | | | | | | | | - standard components e.g. woodscrews, hinges and KD fittings | | | | | | | Scales of production | 1 Standard Components eig. Woodstrews, Imiges and No Jittings | <u> </u> | <u> </u> | <u> </u> | | | | Different volumes | Prototype, batch, mass, continuous | | | | | | | - ,, | 7 | I . | <u>I</u> | | | | | Specialist techniques an | | I | 1 | | | | | Use of production aids | Measurement/reference points, templates, jigs etc. | <u> </u> | <u> </u> | | | | | Tools, equipment and p | | ı | 1 | | | | | Processes | Wastage: Die cutting, perforation, turning, sawing | | | | | | | | Addition: lamination, 3d printing, printing | | | | | | | | Deforming and reforming: vacuum forming, creasing, bending, | | | | | | | | folding | | | | | | | Tolerance | Min. and max. measurements | | | | | | | Commercial processes | Paper and board (off-set lithography and die cutting) <u>or</u> | | | | | | | | Timber based materials (routing and turning) | | | | | | | | | | | | | | | Quality control | | | | | | | |---------------------------------|--|--|--|--|--|--| | Quality | Paper and boards (registration marks) <u>or</u>
Timber based materials (dimensional accuracy using go/no fixture) | | | | | | | Surface treatments and finishes | | | | | | | | Preparation and | Paper and boards (printing, embossing and UV varnishing) <u>or</u> | | | | | | | application | Timber based materials (painting, varnishing, tanalising) | | | | | |